Nowy świat komputerów kwantowych

Jak będzie wyglądał świat, w którym każda informacja będzie dostępna w mgnieniu oka? W mgnieniu oka, ale oczywiście nie dla wszystkich, tylko tych którzy będą wyposażeni w komputery kwantowe.

Podziel się

facebook twitter google+ linkedin email
Swiat komputerów kwantowych Norbert Biedrzycki BrandsIT

Mój artykuł wBrandsIT z dnia 19 czerwca 2018 roku.

 

Dlaczego mimo tego, że o komputerach kwantowych mówi się od lat 80-tych, to dopiero w ostatnich kilku latach zaczęły one budzić duże emocje? Specjaliści twierdzą wręcz, że jesteśmy coraz bliżej przekroczenia granicy, jeśli chodzi o szybkość procesów obliczeniowych.

Współczesne procesory składają się z miliardów tranzystorów wielkości kilku nanometrów zgrupowanych na bardzo małej powierzchni. Według prawa Moore’a liczba tranzystorów w mikroprocesorze podwaja się co mniej więcej dwa lata. Niestety wzrost mocy obliczeniowych w procesorach ulega ciągłemu spowolnieniu. Powoli osiągamy bowiem granice technologiczne w możliwościach “upakowania” coraz większej liczby tranzystorów na tak małych powierzchniach. Granica, której fizycznie przekroczyć się nie da, to tranzystor o rozmiarze pojedynczego atomu oraz pojedynczy elektron służący do przełączania jego stanu od 0 do 1.

 

Skąd biorą się wielkie zalety komputera kwantowego? Najprościej można to wytłumaczyć, przez porównanie go do komputera tradycyjnego. Urządzenie, które znamy z codziennej pracy, dokonuje wszystkich operacji, wykorzystując podstawowe jednostki informatyczne, jakimi są bity. A te mogą reprezentować w zasadzie tylko dwa stany: 0 i 1. W przypadku komputera kwantowego mówimy o wykorzystaniu stanu pośredniego, czyli wyjściu poza schemat dwóch przeciwnych wartości. Kubit (od bitów kwantowych) – bo tak się nazywa jednostka urządzeń kwantowych – może przyjmować jednocześnie wartość 0 i 1, a dokładnie może przyjmować nieskończoną liczbę stanów między 0 a 1. Taki stan nazywa się superpozycją. Dopiero podczas sprawdzenia wartości kubita, przyjmuje on jeden z dwóch stanów podstawowych – 0 lub 1. Wydaje się, że to mała różnica, jednakże kubit znajdujący się w stanie superpozycji może podczas obliczeń wykonywać wiele poleceń jednocześnie. Pomagają nam tu podstawowe zasady fizyki kwantowej. Fizycznie kubit może być reprezentowany przez dowolny układ kwantowy o dwóch różnych stanach podstawowych, na przykład spinu elektronu lub atomu, dwóch poziomów energetycznych w atomie czy dwóch poziomów polaryzacji fotonu – pionową i poziomą. O ile w klasycznym komputerze bit przechowuje dwie wartości, dwa bity przechowują cztery wartości itd, dwa kubity przechowują nie jedną, a cztery wartości jednocześnie. Bezpośrednią konsekwencją tego faktu jest to, że komputer kwantowy potrafi dokonywać jednocześnie wielu operacji na raz, czego nie potrafi urządzenie tradycyjne. By jeszcze bardziej uściślić: kwantowy stan, o którym mowa, doprowadza nas do sytuacji, w której maszyna przetwarza potężne zbiory danych w niewyobrażalnie krótkim czasie. Wyobraźmy sobie tak pokaźne zbiory, że ich przetworzenie wymagałoby milionów lat, gdybyśmy wykorzystali do tego celu komputery tradycyjne. Ta całkowicie abstrakcyjna sytuacja nabiera realności, gdy zaczynamy mówić o użyciu komputera kwantowego. Potrafi on liczyć nawet o setki tysięcy – a w założeniu miliony – razy szybciej od urządzeń zbudowanych w oparciu o zaawansowane podzespoły krzemowe! Idealne zastosowanie dla takiej maszyny to rozpoznawanie obiektów z ogromnego zasobu zdjęć, obliczenia na dużych liczbach, czy szyfrowanie i łamanie szyfrów. Operując na danych matematycznych, tę różnicę w wydajności między kwantowym a tradycyjnym komputerem możemy teoretycznie zwiększyć nawet do poziomu 1:18 000 000 000 000 000 000 razy!

Niestety kubity muszą być całkowicie odizolowane od otoczenia, są bowiem bardzo nietrwałe i mogą być niszczone między innymi przez zmiany temperatury otoczenia, promieniowanie zewnętrzne, światło czy zderzenia z cząsteczkami powietrza. Dlatego próżnia, superniska temperatura i pełna izolacja środowiska są konieczne.

Aby przybliżyć z jak ciekawym, a jednocześnie kontrowersyjnym, zjawiskiem mamy do czynienia, przytoczę przykłady skrajnych reakcji przedstawicieli branży IT. Nie tak dawno jeden z przedstawicieli Google stwierdził, że kwantowy komputer D-Wave rozwiązał zadany mu problem w czasie 1 sekundy. Standardowy potrzebowałby na to podobno 10 000 lat! Z drugiej strony nierzadkie są opinie jak ta, którą wyraził fizyk Matthias Toyer. Gdy trzy lata temu ogłoszono, że komputer The D-Wave2 w specjalnym teście rozwiązał wyznaczone mu zadanie o 3600 razy szybciej, niż komputer tradycyjny, naukowiec zakwestionował te wyniki wykazując, że trudno mówić o takiej wydajności, bo żadne dowody jej nie potwierdzają. Najlepszym podsumowaniem zamieszania na tym polu, mogą być słowa pracownika Narodowego Instytutu Standardów i Technologii w USA, Davida Winelanda, który powiedział: „Jestem optymistą, co do tego, że w dłuższej perspektywie osiągniemy sukces. Jednak ten “dłuższy czas” oznacza, że nie wiem, kiedy to nastąpi”.

Zapraszam do lektury pełnego artykułu – link

 

Powiązane artykuły:

– Niewidzialna pajęczyna wokół nas, czyli Internet Rzeczy

– Według naszych komputerów … Pan nie istnieje

– Upadek hierarchii, czyli kto właściwie rządzi w Twojej firmie

– Koniec życia jakie znamy, czyli witajcie w zdygitalizowanym świecie

– Twoi klienci przybywają z przyszłości, a ty gdzie jesteś?

 

 

Skomentuj

5 comments

    • Norbert Biedrzycki  

      Pełna zgoda. Dopiero ostatnio mamy możliwości technologiczne które pozwalają nam mysleć o budowie pierwszych komputerów kwantowych. Ciągle daleka droga przed nami ale temat jest fascynujący